A17 New Information about Specifying and Cleaning Durable Coated Fabrics for Healthcare

AAHID Education Session
Monday, November 4, 2019
Become a CHID!
Certified Healthcare Interior Designer®

AAHID.ORG
Continuing Education Information

AIA –
• Have your conference badge scanned by the room monitor at the start of each session you attend.
• Complete the AIA verification form (be sure to check off the sessions you attend) and retain it for your records. CE credits will be uploaded to the AIA transcript system within 6-8 weeks of the close of the conference.

IDCEC –
• Have your IDCEC verification form STAMPED by the room monitor at the start of each session you attend. This is the ONLY proof of attendance that will be accepted.
• You will self-submit your credits to the IDCEC system at the conclusion of the conference.
• If you have questions about reporting your credits, contact the interior design association that is responsible for monitoring mandatory continuing education to fulfill membership requirements.

EDAC –
• Complete the EDAC verification form and retain it for your records
• You will self-submit your CE credits to Castle Worldwide at the time of your EDAC renewal. Renewal notices with login instructions will be sent from Castle Worldwide six months and three months prior to the candidate’s renewal date.
• The verification form is your proof of attendance in case of an audit.
Session Evaluations in HCD Mobile App –

• All session evaluations will be done through the HCD Mobile App
• If you have not done so already, please download the app through your device’s app store. If you have any questions or need assistance, please email support@core-apps.com

Individual Session Evaluation Instructions –

• On the home screen, click My Schedule
• Find the session you are attending
• After selecting an individual session, a navigation bar will appear on the left. Click the clipboard icon and evaluation/survey will begin
CONNECT - FOLLOW - SHARE

Engage with others at HCD Expo & Conference by connecting on social media.

LIKE
facebook.com/HCDcon

FOLLOW
@HCDcon

#HCDcon
Teri Lura Bennett
RN CHID CID IIDA
EDAC
Interior Designer
Johns Hopkins
Health System
Facilities
Architecture + Planning

Shari Solomon,
Industrial Hygienist & President,
CleanHealth Environmental, LLC.

Barbara Dellinger,
MA, FIIDA, CHID, CID, EDAC, NCIDQ
Director
Design & Research,
Adventist Healthcare

Linda Gabel,
CHID IIDA
Senior Interior Design Planner,
The Ohio State University
Wexner Medical Center
Learning Objectives

#1. Learn about durable coated fabric construction, performance characteristics, potential new and innovative durable coated fabric technologies, and field reporting processes and procedures.
Learning Objectives

#1. Learn about durable coated fabric construction, performance characteristics, potential new and innovative durable coated fabric technologies, and field reporting processes and procedures.

#2. Discuss current cleaning/disinfecting paradigms, and explore the potential for innovation new cleaning technologies to help reduce HAI’s, and improve performance.
Learning Objectives

#1. Learn about durable coated fabric construction, performance characteristics, potential new and innovative durable coated fabric technologies, and field reporting processes and procedures.

#2. Discuss current cleaning/disinfecting paradigms, and explore the potential for innovation new cleaning technologies to help reduce HAI’s, and improve performance.

#3. Understand the challenges of conducting a real-word, in-house, research field study of heavy/duty healthcare recommended, durable-coated fabrics and hear generic findings along with cleaning and disinfecting results from the same study.
#1. Learn about durable coated fabric construction, performance characteristics, potential new and innovative durable coated fabric technologies, and field reporting processes and procedures.

#2. Discuss current cleaning/disinfecting paradigms, and explore the potential for innovation new cleaning technologies to help reduce HAI’s, and improve performance.

#3. Understand the challenges of conducting a real-word, in-house, research field study of heavy/duty healthcare recommended, durable-coated fabrics and hear generic findings along with cleaning and disinfecting results from the same study.

#4. Explore widespread durable coated fabric failures in a health system, discover the sources of failures and chemical interactions between disinfectants, contaminates, and coated fabric; assess the impact to the hospital’s business model; define new criteria and opportunities to enlarge the conversation and collaborate to rethink the basic building blocks of expectations.
Show of Hands!

How many of you are experiencing the following?

SOILING & STAINING?
Show of Hands!

PUDDLING?
Show of Hands!

DELAMINATION?
How many of you have been told, as I was...

“...this is only happening at your hospital”.

#HCDcon
Really?

We hear you.

We are right there with you.

It’s embarrassing, time-consuming, and expensive to remedy these failures of our furnished environment.

We are here to talk about what we can do to fix this!
Survey of 150+ Healthcare designers;

When evaluating an upholstery material for your public and patient healthcare environments,

...what are your top issues?
Survey Results indicated these issues were all important:

• Aesthetics
• Cleanability
• Cost
• Performance / Durability
• Sustainable (Green)
• Warranty

…but which were MOST important, i.e. how did they RANK?
#1 Performance / Durability 38%
#2 Cleanability 24%
#3 Aesthetics 18%
#4 Warranty 11%
#5 Cost 6%
#6 Sustainable (Green) 3%
The Challenges....

Manufacturer testing, standards, and warranties based on cleaning/disinfecting paradigms ...*that aren't happening*!

The result is premature upholstery fails, disgusted patients & visitors, and embarrassed staff who are managing furniture instead of patients!
...with the help of AAHID we are reaching out to better understand the magnitude of upholstery product failures within acute care, outpatient care, and long term care failures, by gathering information on how materials are being cleaned, and the current status of failures, associated costs, and potential solutions issues being discovered.

Cleaning and Disinfection Survey; to collect data on cleaning/disinfection products & procedures being used, from Environmental Services, Facility Management, and Designers:

https://www.surveymonkey.com/r/J6W3PDX.

Healthcare Durable Coated Fabrics Upholstery Failures Survey; to provide data regarding actual problems and failures of various types of durable coated fabrics used in healthcare across the U.S.

https://www.surveymonkey.com/r/HKBM67B

#HCDcon
Recap of Basic Durable-Coated Fabrics information:

What are durable coated fabrics?

Coated Fabrics
- Represent a family of fully coated textiles that can be considered “non-porous”.

Coated Fabrics
- Are NOT a textile with a coating applied to the yarn.

Choices are:
- PVC – Polyvinyl chloride (vinyl)
- PU – Polyurethane (PU)
- Silicone – relatively new to the Coated Fabrics market
- Thermoplastic Elastomers – very new, used in roofing products for years

#HCDcon
Recap of Basic Durable-Coated Fabrics information:

Construction Basics

PVC Cross Section
- Clear Protective top-finish critical to durability
- Skin-coat – 0.006” – 0.008”
- Foam Layer – 0.020” – 0.040”
- Textile Backing

Polyurethane Cross-Section
- ~0.002” Skincoat* Critical to Durability
- Adhesive coating
- Textile/PU Base

*Best: Polycarbonate – High resistance to hydrolysis
Good: Polyether – Good resistance to hydrolysis
Fair: Polyester – Low resistance to hydrolysis

Thermoplastic Elastomers
- 0.020” – 0.25” Single ply Coating
- Textile Backing

Silicone Coating
- 0.010” – 0.12” Single ply Coating
- Textile Backing

#HCDcon
2. Discuss current cleaning/disinfecting paradigms, and explore the potential for innovation new cleaning technologies to help reduce HAI’s, and improve performance.
Cleaning & Disinfection Challenges and Emerging Technologies

Presented by:
Shari Solomon, Esq
301-377-9555
solomon@cleanhealthenv.com

CleanHealth Environmental
Risk Management Training Solutions

www.cleanhealthenv.com
The Most Recent Statistics
(Published March 2014)

HAIs in U.S Acute Care Hospitals in 2011

- 722,000 HAIs; 75,000 deaths during their hospitalizations.

- 1 in 25 hospital patients on any given day has at least one HAI.

- More than half of all HAIs occurred outside of the intensive care unit.

- U.S. Centers for Disease Control and Prevention (CDC)
Surface Contamination

Over the past decade, substantial scientific evidence has accumulated indicating that contamination of environmental surfaces plays an important role in the transmission of several key healthcare-associated pathogens, including MRSA, VRE, Clostridium difficile, Acinetobacter, and norovirus.
Soft Surface “Disinfection”
Durable-Coated Fabric Upholstery

• Soft surface claims are limited by the EPA, to “sanitizer” versus “disinfectant” claims.

• The EPA Performance Standard for non-food contact sanitizers requires a reduction of at least 99.9% (a 3-log reduction*).

• The disinfectant standard requires a higher level of reduction, 99.9999% reduction/kill (a 6-log reduction).

*3 log reduction means the number of germs is 1000 times smaller. 4 log reduction means the number of germs is 10,000 times smaller.
Furniture Challenges

“Upholstered furniture in patient care areas should be covered with fabrics that are fluid-resistant, non-porous and can withstand cleaning with hospital-grade disinfectants; microorganisms have been shown to survive on porous fabrics such as cotton, cotton terry, nylon and polyester, and on plastics such as polyurethane and polypropylene.”

- AHE – Association for the Healthcare Environment
Cost of Various HAIs

<table>
<thead>
<tr>
<th>HAI Type</th>
<th>Cost in Dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRSA Infection</td>
<td>$35,000-$60,000</td>
</tr>
<tr>
<td>C.diff Infection (CDI)</td>
<td>$18,000-$90,000</td>
</tr>
<tr>
<td>Surgical Site Infection (SSI) (Knee or Hip)</td>
<td>$30,000-$50,000</td>
</tr>
<tr>
<td>Central Line Associated Blood Stream Infection (CLABSI)</td>
<td>$16,000-$20,000</td>
</tr>
<tr>
<td>Catheter associated Urinary Tract Infection (CAUTI)</td>
<td>$5,000-$10,000</td>
</tr>
<tr>
<td>Ventilator associated pneumonia (VAP)</td>
<td>$15,000-$25,000</td>
</tr>
</tbody>
</table>

Infect Control Hosp Epidemiol 2010; 31:365-373
Merollini et al. BMC Health Services Research 2013, 13:91

http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6008a4.htm
http://www.cdc.gov/hai/pdfs/hai/scott_costpaper.pdf
Organisms Outside Human Body

<table>
<thead>
<tr>
<th>Microbe</th>
<th>Survival time outside human body</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clostridium difficile (spores)</td>
<td>5 months</td>
</tr>
<tr>
<td>Acinetobacter spp.</td>
<td>3 days to 5 months</td>
</tr>
<tr>
<td>Enterococcus spp. including VRE</td>
<td>5 days – 4 months</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>6 hours – 16 months</td>
</tr>
<tr>
<td>Klebsiella spp.</td>
<td>2 hours to > 30 months</td>
</tr>
<tr>
<td>Staphylococcus aureus, inc. MRSA</td>
<td>7 days – 7 months</td>
</tr>
<tr>
<td>Norovirus (and feline calicivirus)</td>
<td>8 hours to > 2 weeks¹</td>
</tr>
<tr>
<td>SARS Coronavirus</td>
<td>72 hours to >28 days²</td>
</tr>
<tr>
<td>Influenza</td>
<td>Hours to several days³</td>
</tr>
</tbody>
</table>

Adapted from Kramer et al. *BMC Infect Dis* 2006;6:130.

Germ Awareness is On The Rise
Resistance of Pathogens to Disinfectants

Hard-to-Kill

<table>
<thead>
<tr>
<th>Pathogens</th>
<th>Example</th>
<th>Low-level Disinfection</th>
<th>Intermediate-level Disinfection</th>
<th>High-level Disinfection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prions</td>
<td>Mad Cow Disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacterial Spores</td>
<td>Clostridium difficile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mycobacteria</td>
<td>Tuberculosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonlipid or Small Viruses</td>
<td>Norovirus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fungi</td>
<td>Athletes foot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetative bacteria</td>
<td>MRSA, VRE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipid or Medium Viruses</td>
<td>HIV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Easy-to-Kill

Certified Healthcare Environmental Services Technician

COPYRIGHT © 2015 ASSOCIATION FOR THE HEALTHCARE ENVIRONMENT
Cleaning Agents/Disinfectants Typically Used for Healthcare Furniture

Bleach: sodium hypochlorite2 in a 5.25 - 6.25% dilution is an intermediate level disinfectant (use label recommendation for mixing bleach with water – typical is 10:1 water to bleach).

Peroxide: in a 3.0% solution, sometimes accelerated with acid, hydrogen peroxide can be either a low or intermediate level disinfectant

UV lights: The wavelength of UV radiation ranges from 210 to 328 nm (2100 to 3280 A) at 2-6 mw/cm2. 200-280 nm is typically considered to be the UVC range.

Alcohol: Isopropyl and ethyl alcohol at 55-70%, and usually used in combination with quaternary ammonium salts or as 70% isopropyl alcohol

AHE – Association for the Healthcare Environment
Cleaning Agents/Disinfectants Typically Used for Healthcare Furniture

Quaternary Ammonium (Quats): low level disinfectants that will kill most bacteria, viruses and fungi. Commonly used as the routine disinfectant product in healthcare applications.

Phenolic: intermediate level disinfectants that are effective against *Mycobacterium tuberculosis*; however, due to toxicity and environmental concerns they are being phased out of common use.

Steam: The vapor into which water is converted when heated. In healthcare, steam may be used to get rid of bed bugs and other infestations, and/or other infectious agents in upholstered furniture.

Chlorine Dioxide: intermediate level disinfectant in a 2.0 - 5.0% concentration. Although effective against C. diff., its use is not widespread in healthcare applications.
In the Real World

Timeframes for Cleaning

- Occupied Rooms
 - AHE Best Practice – 15-20 minutes
 - Real World – 10-12 minutes

- Discharge Cleaning
 - AHE Best Practice – 45-60 minutes
 - Real World – 30-40 minutes
What are dwell times?

Dwell Time

The amount of time that a disinfectant must remain wet on a surface to kill microorganisms.

Why does dwell time matter?

Knowing the dwell time impacts how much disinfectant to use and how long to leave it wet on the surface!
In the Real World

How a cleaning product is actually used is dependent on the cleaning protocols set up by the individual healthcare facility. Some of problems that exist with how these chemicals are used in healthcare facilities include:

1. The cleaning solution used is much more concentrated than stated in the directions.
2. The cleaning solution is allowed to remain on the surface for longer than the prescribed time.
3. The dwell time is not met and therefore must be reapplied multiple times.
4. The cleaning solution is not rinsed off with water.

It is still unclear what the long-term effect may be if the active ingredient of a disinfectant builds up on the fabric.
Health Care Furniture Design - Guidelines for Cleanability

• Intention: Provide direction to manufacturers, specifers, and users of healthcare furniture

• Purpose: Provide guidance to furniture manufacturers and healthcare professionals in understanding typical cleaners, disinfectants, cleaning methods, and performance of furniture when exposed to these cleaners and disinfectants.
Protocols Surrounding Furniture Selection

• Planning stage
 • Environmental Services (EVS) and Infection Prevention (IP) part of the decision-making process
 • Request cleaning and disinfection specifications from manufacturers.
 • Request studies regarding durability
 • Products should be designed for ease of cleanability. Where possible, parts (cushions, arm pads, etc.) should be easily removable and/or have removable covers to facilitate cleaning or replacement.
Selection of Furniture

• Cleanable
• Easy to maintain and repair
• Resistant to microbial growth
• Nonporous
• Seamless

- PIDAC: Best Practices for Environmental Cleaning for Infection Prevention and Control | April 2018
Protocols Surrounding Furniture Cleaning, Disinfection and Maintenance

- Create and adhere to Facility Policies & Procedures
 - Training and education
 - Include manufacturers cleaning instructions geared to actual use provided for all product materials and finishes.
 - Include procedures for EVS if damage is identified during cleaning
 - Conduct regular audits
 - Wiping program may be considered
Emerging Technologies: Antimicrobial Surfaces

Replacing traditional materials (e.g., plastic, stainless steel) with materials with antimicrobial properties or treating surfaces with coatings is a potential solution to this problem.

Candidate antimicrobial surfaces and coatings supported by data from nonclinical settings include:

- Copper
- Silver
- Stainless steel coated with titanium dioxide
- Glass coated with xerogel, and
- Surfaces sprayed with surfacine or organosilane
Emerging Technologies: Antimicrobial Surfaces

“With the exception of copper, there is very limited evidence that any of these approaches persistently reduce microbial contamination in clinical settings and no evidence that they reduce the incidence of health care-associated infection” (PIDAC)

There is now evidence from multiple studies demonstrating that copper surfaces used in acute and long-term care settings reduce overall bacterial burden (e.g., total colony forming units per item or area). (PIDAC)

There is, therefore, insufficient evidence to recommend for or against the use of copper surfaces or copper impregnated linens in the health care setting, and facilities should weigh the cost, functionality, the limitation of copper (See Table 6) against its known antimicrobial properties, and low quality evidence suggesting it may impact infection rates when considering the use of copper surfaces or linens. (AHE)

“The use of antimicrobial inhibitors in materials and finishes is an emerging technology that is currently under investigation. No recommendation is given” (AHE)
Emerging Technologies: Surface Disinfection

Advantages and Disadvantages of HPV and UV Disinfection Systems Compared to Manual Cleaning and Disinfection Alone

Hydrogen Peroxide Vapor

- Advantage: Simultaneous disinfection of room surfaces, furniture, and complex equipment
- Disadvantage: Potential damage of some plastic and polymer surfaces

Ultraviolet light

- Advantage: No residue after use, Simultaneous disinfection of room surfaces, furniture, and equipment
- Disadvantage: Destructive effect over time on plastics and vinyls and fading of paints and fabrics
Continuous Disinfection Technologies

- Disinfecting Unit: Inserted into the ducts of an HVAC system, the system reacts with the H$_2$O molecules found in the air to continuously create highly effective oxidizing molecules, which are delivered at safe levels to all surfaces.

- High-intensity Narrow-spectrum (HINS) Light - composed of violet light from the visible spectrum with a wavelength of 405 nanometres (nm)
Role of Hospital Surfaces in Disease Transmission: Will Use of a Continuously Active Disinfectant Reduce Microbial Contamination?

William A. Rutala, Ph.D., M.P.H., C.I.C.
Director, Statewide Program for Infection Control and Epidemiology and Professor of Medicine, University of North Carolina at Chapel Hill, NC, USA
Former Director, Hospital Epidemiology, Occupational Health and Safety, UNC Health Care, Chapel Hill, NC (1979-2017)
Continuous Room Decontamination Technologies for Disinfection of the Healthcare Environment

- Visible light disinfection through LEDs
- Low concentration hydrogen peroxide
- Self-disinfecting surfaces
- Continuously active disinfectant (CAD) or persistent disinfectant that provides continuous disinfection action
 - Allows continued disinfection (may eliminate the problem of recontamination)
 - Patients, staff and visitors can remain in the room
Table 2. Relationship between microbial reduction of epidemiologically-important pathogens (EIP) and colonization/infection in a patient subsequently admitted to a room of a patient colonized/infected with an EIP by decontamination method.

<table>
<thead>
<tr>
<th></th>
<th>Standard Method</th>
<th>Enhanced method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quat</td>
<td>Quat/UV</td>
</tr>
<tr>
<td>EIP (mean CFU per room)'</td>
<td>60.8</td>
<td>3.4</td>
</tr>
<tr>
<td>Reduction (%)</td>
<td>94</td>
<td>81</td>
</tr>
<tr>
<td>Colonization/Infection (rate)'</td>
<td>2.3</td>
<td>1.5</td>
</tr>
<tr>
<td>Reduction (%)</td>
<td>35</td>
<td>17</td>
</tr>
</tbody>
</table>

Figure 2. Quartile distribution of healthcare-acquired infections (HAIs) stratified by microbial burden measured in the intensive care unit (ICU) room during the patient’s stay. There was a significant association between burden and HAI risk ($P = .038$), with 89% of HAIs occurring among patients cared for in a room with a burden of more than 500 colony-forming units (CFUs)/100 cm².
Thank you!

"Let me guess...it's contagious!"

© Original Artist
Reproduction rights obtainable from
www.CartoonStock.com
3. Understand the challenges of conducting a real-word, in-house, research field study of heavy/duty healthcare recommended, durable-coated fabrics and hear generic findings along with cleaning and disinfecting results from the same study.
History of failures of durable-coated fabrics at AHC and “Ah Ha” moments...

- Prep Joint Commission visits in 2014 and 2017 - requests by Depts for new furniture!
More and more failures...
The “Ah –Ha!” moment that started it all!

- Shuttle bus conversation with other HC designers (in-house and consultants) from airport to Design Connections November 2017

- We expressed frustration with coated fabric failures... we all began sharing stories and photos.

- Continued the discussion at Design Connections with other AAHID members. Ah –Ha!...

We were ALL having the same problems!
The Durable-Coated Fabrics Task Group was born... comprised of manufacturers, distributors, healthcare designers, trade association and environmental services representatives.

Through conference calls and meetings we discuss issues of durability, including polling the industry for information on current practices, upholstery specification checklists, durability testing, and industry advancements. Our findings are posted on the AAHID LinkedIn page to help continue the dialog.
Confirmed: the problem exists across the U.S., Canada, and possibly world-wide....

Q1 When selecting any upholstery fabric for a Healthcare project, please rank the following in order of importance, with 1 being most important, and 6 (or 7) being least important.

Q11 If you answered ‘yes’ to a fabric failure, please describe the type of failure(s). (If a photo is available that reflects failure, please upload in question 12/14). If no to a fabric failure, please skip.
Further case studies being developed...
Example: AHC – Case Study – SGMC Unit 2D

Within 3 months of directive from new nurse manager to use Bleach wipes on ALL chairs every day, this damage occurred. Chairs had been in use (with no damage) for over 4 years. Other chairs are still use with no damage.

Cost for new chairs:
$370 \times 17 = \$6,290
Eager to do your own research?
Goals for SGMC Field Study

• Reupholster all chairs in *most durable* DCFs so that they can be consistently cleaned *every* day for at least 4 months in order to see which are most durable.
 • Convince EVS to clean them thoroughly every day
 • Confirm that EVS is cleaning them every day

• Swab for bioburden (myself) cleanliness once per week

• Original outcome goals:
 1. Determine which DCF’s were most durable (withstood being cleaned everyday)
 2. Determine which DCF’s were easiest to clean and/or stayed cleanest

BUT new issues led to new goals

• What is definition of “Heavy Duty/24/7? Development of Risk Assessment
• Field Study – too many issues to determine #2. Preliminary results only.
Evergreen Lounge Field Study

- Chairs in ICU/CVIR Waiting area (Evergreen Lounge) were metal framed in excellent condition, upholstered in woven textile fabric. (c.2012)

- Reupholster seating units, 2-seater and 3–seater in the following durable-coated fabrics:
 - Silicone
 - Polyurethane/Polycarbonate
 - Vinyl
 - TPE

- Manufacturers donated durable-coated fabrics. Spec Furniture donated labor to reupholster. AHC paid for new cushions.
Making the case for the importance of Evidence-Based Design and evaluating return on investments (ROI)

Research objective: to determine results for
 • HAI’s related to fabric
 • ROI’s for failures

Low cost for reupholstery

Each type of unit, single/double/triple had same seat-back upholstery, but different cushions

Silicone (x3) TPE (x4) Vinyl (x5) PU/PC (x6)

Careful coordination of 18 different upholstery materials to achieve aesthetic congruence, and avoid “crazy quilt” appearance.
Field Study Set up Process...
...educate, select, coordinate, order, install, educate, plead, track, swab, and continue to plead...
Swabbing – to verify effectiveness of cleaning

- SureTrend – Maryland Health Connections measure for bioburden (ATP)

Scoring: 25 – 50 = Passing

11 = Excellent

2725 = FAIL
Preliminary Results of SGMC Evergreen Lounge Durable Coated Fabrics Field Study Results 10.11.2019

<table>
<thead>
<tr>
<th>DCF type</th>
<th>Splitting</th>
<th>Cracking/Peeling of coating from backing</th>
<th>Crocking</th>
<th>Softened or Gummy</th>
<th>Stretching</th>
<th>Ink Transfer</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Silicone 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Silicone 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Silicone 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Thermoplastic Elastomer 1 (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Thermoplastic Elastomer 1 (b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Thermoplastic Elastomer 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Thermoplastic Elastomer 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Vinyl 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Vinyl 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Vinyl 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Vinyl 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Vinyl 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Polyurethane/Polycarbonate 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Polyurethane/Polycarbonate 2 (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Polyurethane/Polycarbonate 2 (b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Polyurethane/Polycarbonate 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Polyurethane/Polycarbonate 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Polyurethane/Polycarbonate 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Seats, backs and sides cleaned with Echolab A-456 II, from Jan 10 – Oct 10, 2019. Although cleaning was supposed to be every day (7 days per week), in reality it was sporadic – approx. 3 – 5 times per week, not every day.

<table>
<thead>
<tr>
<th>4 – Excellent</th>
<th>3 – Good</th>
<th>2 – Poor</th>
<th>1 – Severe</th>
</tr>
</thead>
</table>
A new tool to evaluate each durable-coated fabric is needed!

- Inconsistent definitions of “HC Heavy Duty – approved for 24/7 use”
- Inconsistent vocabulary between disciplines
- Too often the desire for “sustainable” supersedes durability & performance
- Difficult for designers to get the info (if they even know what to ask!)
 - Many tests exist, some we don’t know about, how do they relate to our field conditions, are the results “smoke and mirrors”, or just too much scientific jargon?
 - Reps don’t know – Tech depts. feel it’s too much info
 - Not enough dialogue with other disciplines
 - Memo Tags very inconsistent
- Healthcare Furnishings Upholstery Risk Zones needed to be identified

Find your project’s Risk Zone...

...Reduce Risks for upholstery failures!
Healthcare locations with upholstered seating can be categorized into one of four Risk Zones/Areas

Use this guide to evaluate each durable coated fabric being considered, based on its location (area/zone)

- Highest Risk Zone/Class 4: Patient areas
- High Risk Zone/Class 3: Nursing Unit Support
- Medium Risk Zone/Class 2: Dining, Lobbies, Outpatient
- Low Risk Zone/Class 1: Offices
<table>
<thead>
<tr>
<th>Test</th>
<th>ACT Voluntary Performance Guidelines for Coated Fabrics minimum(^2) or if (*) not included within ACT Voluntary Performance Guidelines</th>
<th>HC HD 24/7 recommendations for Highest Risk / Class 4 and High Risk / Class 3</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrasion Resistance: CFFA 1: Determines relative abrasion resistance under service conditions.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| • Method a, ASTM D 4157 – 2013: Wyzenbeek Method: A square woven cotton fabric is rubbed against a sample under controlled conditions to determine wear properties\(^2\).
 o Standard Test Method for Abrasion Resistance of Textile Fabrics (Oscillatory Cylinder Method) | 50,000 double rubs | 100,000 double rubs | Manufacturers generally use a CS 17 rubber-based abrading wheel to determine print wear.
It is recommended for designers to discuss with manufacturer / distributor of durable coated fabric the method and results used based upon the printed durable coated fabric being evaluated for specification. |
| • Method b, ASTM D 3389 – 2016: Taber Abraser Method: A specimen clamped to a rotary platform is rotated under two rubber-based grinding wheels. Usually used for determining print wear.
 o Standard Test Method for Coated Fabrics Abrasion Resistance (Rotary Platform Abrader) | | | |
4. Explore widespread durable coated fabric failures in a health system, discover the sources of failures and chemical interactions between disinfectants, contaminates, and coated fabric; assess the impact to the hospital’s business model; define new criteria and opportunities to enlarge the conversation and collaborate to rethink the basic building blocks of expectations.
Case Study – University Health System

New 1.2 million SF state-of-the-art Cancer Hospital opened in 2014

Project Goals for Furniture and Finishes:
• Create a safe environment for patients, guests and staff
• Sophisticated esthetic
• LEED Gold / reduce use of PVC – based products

 Design Consultant chose to replace 90% of PVC with Polyurethane coated fabrics and finishes.

• Reduce first cost
• Increased durability
• Ease of housekeeping and maintenance
Case Study – Unintended Consequences

Rapid degradation of polyurethane (PU) coated fabrics and finishes:

- At 8 months in Emergency Department waiting and exam rooms
- Within 2 years:
 - Surgery waiting areas, infusion rooms
 - all 24/7 patient care areas, including task chairs/stools
- Within 3 years:
 - all areas, Gummy texture and peeling of task chair/stools
 - all clinic waiting areas, and PU top coat failure on printed vinyl, revealing white base coating
 - peeling of PU wood finishes
 - peeling and degradation of PU arm caps
Case Study: Public and Patient Area Failures

Issues:
• Cleaning & Chemicals
• “no rinse” protocol
• UV light treatment
• Heat
• Oils
• Sweat
• 24/7 use
• Rubbing/abrasion
• Polyurethane-based materials
Case Study: Clinical and Office Support Areas Failures

Issues:
- Heat
- Oils
- Sweat
- 24/7 use
- Rubbing/abrasion points
- Polyurethane-based materials

These surfaces are not scheduled to be cleaned by EVS
Case Study – Unintended Consequences

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,053</td>
<td>Inpatient sleep settees, overnight sleep chairs, & patient recliners</td>
</tr>
<tr>
<td>540</td>
<td>Large scale lounge seating units</td>
</tr>
<tr>
<td>923</td>
<td>Infusion Recliners & exam /infusion room guest seating</td>
</tr>
<tr>
<td>130</td>
<td>(ED only) modular & exam room seating</td>
</tr>
<tr>
<td>1,623</td>
<td>Upholstered Task chairs & stools</td>
</tr>
<tr>
<td>4,269</td>
<td></td>
</tr>
</tbody>
</table>

Note that we have ordered large quantities of furniture with **these same polyurethane fabrics and finishes since 2013** to replace public and patient care furniture in waiting areas throughout the university hospital campus and all off-campus buildings and clinics.
1. Epidemiology (EPI) Concerns

- EVS staff is unable to properly clean and disinfect the surfaces due to damage & vulnerable subsurface of material exposed.
- EPI has defined the following Hospital Acquired Infections, (HAI) risks associated with the exposed sub-surfaces, cushion cores, soft backings, and raw wood:
 - Multidrug resistant organisms (e.g. MRSA, VRE)
 - Clostridium difficile
 - Acinetobacter
 - Pseudomonas
 - Klebsiella

2. Contaminated Furniture has to be pulled out of service - sent to hard trash

3. Financial impact - unforeseen cost of replacement furniture
 - capital & operational budget diversions est. $9 Million over 5+ years
Case Study: What’s the plan moving forward?

Strategies:

• **Discover the sources of failures** - chemical interactions between disinfectants, UV, contaminates, and interior materials – *collaborate with Chemical Engineering Department to understand chemical formula and construction of materials, generate hypothesis for lab tests*

• **Assess the impact** to the hospital’s business model – *operational vs. capital]*

• **Define new criteria and opportunities** to enlarge the conversation - *engage Facilities, EVS, EPI, Safety, Compliance, Supply Chain, Center for Innovation, Hospital Leadership*

 • Reduce cost – first and life-cycle considerations
 • Increased durability to resist cleaning methods and environmental contaminates
 • Create new tests & performance criteria for upholstery and finishes specifications
 • Safer environment for all users

• **Continually Collaborate** to reframe expectations of Hospital Leadership
Case Study: Third Party Lab Material Testing

Hypothesis – Utilize a Third Party Lab for Material Testing methods that reflect the current state of disinfecting chemicals/methods, and environmental contaminates within the acute care hospital setting to more accurately predict material performance:

- Disinfectant & Accelerated UV Exposure Tests, Combined Together
- Stain Resistance Test – New Staining Agents and Cleaning Chemicals

Ten upholstery fabrics types currently marketed for “healthcare” tested:

- Vinyl with Brand A topcoat
- Vinyl with UV and acrylic topcoat
- Vinyl with Brand B topcoat
- Polyurethane
- Thermoplastic Elastomer
- Polycarbonate with Brand C topcoat
- Silicone, no top coat
- Silicone with Brand C topcoat
- 100% nylon matrix
- Treated Leather
Case Study: Disinfectant & Accelerated UV Exposure Tests

Disinfectants and Cleaners – after saturation and drying, chemicals are left on samples going into Xenon-Arc chamber to test for light-fastness and degradation

- 10% bleach solution
- Oxivir TB: Hydrogen Peroxide (0.5%)
- Oxycide: Hydrogen Peroxide + Peroxyacetic Acid
- Quaternary - Virex II 256
- JF2 Glance: Non-ammoniated
- JF3 Stride Citrus Neutral cleaner
- Hand Sanitizer - 70% Isopropanol
Case Study: Disinfectant & Accelerated UV Exposure Tests

Rating for fabrics after Disinfectant and Xenon Arc Exposure:

4 Excellent: No effect to the integrity or appearance of the material

3 Good: Slight discoloration. Damage determined to not affect the material performance and aesthetically mildly objectionable.

2 Poor: Moderate effect. Softening, stiffening and/or swelling are present and permanent.

1 Severe effect: Discoloration, cracking and/or delamination clearly visible or objectionable aesthetics.
Case Study: Disinfectant & Accelerated UV Exposure Tests - Process

DISINFECTANT APPLICATION 80 DEGREE DRYING CABINET XENON ARC CABINET

EVALUATE SAMPLES
Case Study: Disinfectant & Accelerated UV Exposure Tests - Results

<table>
<thead>
<tr>
<th>Disinfectant</th>
<th>Fabric 1 Vinyl w/Brand A Topcoat</th>
<th>Fabric 2 Vinyl w/UV & Acrylic Topcoat</th>
<th>Fabric 3 Thermoplastic Elastomer</th>
<th>Fabric 4 Silicone, no topcoat</th>
<th>Fabric 5 Polyurethane</th>
<th>Fabric 6 Treated Leather</th>
<th>Fabric 7 Vinyl w/Brand B Topcoat</th>
<th>Fabric 8 100% Nylon Matrix</th>
<th>Fabric 9 Polycarbonate w/Brand C Topcoat</th>
<th>Fabric 10 Silicone w/Brand C Topcoat</th>
</tr>
</thead>
<tbody>
<tr>
<td>A In-house Bleach</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 1.7</td>
<td>Rating: 3.3</td>
<td>Rating: 1.0</td>
<td>Rating: 2.0</td>
<td>Rating: 1.3</td>
<td>Rating: 1.0</td>
<td>Rating: 2.0</td>
<td>Rating: 4.0</td>
</tr>
<tr>
<td>B Oxivir TB: Hydrogen Peroxide (8.5%)</td>
<td>Rating: 2.0</td>
<td>Rating: 3.0</td>
<td>Rating: 2.0</td>
<td>Rating: 3.0</td>
<td>Rating: 1.0</td>
<td>Rating: 2.7</td>
<td>Rating: 3.0</td>
<td>Rating: 1.3</td>
<td>Rating: 2.0</td>
<td>Rating: 3.0</td>
</tr>
<tr>
<td>C Oxycide: Hydrogen Peroxide + Peroxyacetic Acid</td>
<td>Rating: 2.0</td>
<td>Rating: 3.0</td>
<td>Rating: 2.0</td>
<td>Rating: 3.0</td>
<td>Rating: 1.3</td>
<td>Rating: 2.3</td>
<td>Rating: 2.3</td>
<td>Rating: 2.3</td>
<td>Rating: 2.0</td>
<td>Rating: 3.0</td>
</tr>
<tr>
<td>D Quaternary: Virex II 256</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 2.0</td>
<td>Rating: 4.0</td>
<td>Rating: 1.3</td>
<td>Rating: 3.0</td>
<td>Rating: 4.0</td>
<td>Rating: 1.3</td>
<td>Rating: 1.7</td>
<td>Rating: 4.0</td>
</tr>
<tr>
<td>E JF2 Glance: Non-ammoniated</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 2.0</td>
<td>Rating: 2.7</td>
<td>Rating: 1.0</td>
<td>Rating: 3.7</td>
<td>Rating: 4.0</td>
<td>Rating: 1.0</td>
<td>Rating: 2.3</td>
<td>Rating: 3.0</td>
</tr>
<tr>
<td>F JF3 Stride Citrus Neutral Cleaner</td>
<td>Rating: 3.3</td>
<td>Rating: 4.0</td>
<td>Rating: 2.0</td>
<td>Rating: 2.7</td>
<td>Rating: 1.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.3</td>
<td>Rating: 2.7</td>
<td>Rating: 2.3</td>
<td>Rating: 2.3</td>
</tr>
<tr>
<td>G Hand Sanitizer: 70% Isopropanol</td>
<td>Rating: 4.0</td>
<td>Rating: 3.3</td>
<td>Rating: 2.0</td>
<td>Rating: 2.0</td>
<td>Rating: 1.0</td>
<td>Rating: 3.7</td>
<td>Rating: 4.0</td>
<td>Rating: 1.3</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
</tr>
</tbody>
</table>

Ratings
- **4** Excellent
- **3** Good
- **2** Poor
- **1** Severe Effect

Copyright © 2018. Ohio State Innovation Foundation. All rights reserved. No part of this document may be reproduced, displayed, modified, or distributed in any form without a written agreement with The Ohio State University Technology Commercialization Office.”

#HCDcon
Case Study: Disinfectant & Accelerated UV Exposure Tests

Takeaways:

• Prolonged exposure to UV light matters with **ALL disinfectant residue**
• **UV additive** appears to be very helpful in preventing damage
• **Topcoats/base cloth combinations matter** – polycarbonate vs. silicone with the same topcoat had different results
• **50% of fabrics** rated for healthcare appear vulnerable to alcohol-based hand sanitizer and “non-oxidizing” cleaning chemicals
• **Acrylic topcoat**, not usually considered for healthcare, appears to perform very well with disinfecting chemicals, even alcohol-based hand sanitizers
Case Study: Stain Resistance Test – New Staining Agents

Commonly used environmental contaminants in healthcare and public areas tested:

Patient Transferrable Stains
- Super Lustrous Lipstick- Love That Red (already on standard test)
- Baby Oil (already on standard test)
- Daily Moisture Dry Skin Moisturizer
- Acetone Nail Polish Remover
- Non-Acetone Polish Remover
- Broad-Spectrum Sunscreen SPF 50 (Oxybenzone 5%, Avobenzone 3%, Octocrylene 4%, Homosalate 10%, Octisalate 5%)
- Skin Sunscreen Lotion with Broad Spectrum SPF 60+(Zinc oxide 4.7%, Titanium dioxide 4.9%)
- Jamaican black castor oil strengthen restore leave-in conditioner

Synthetic Body Fluids and Clinical Reagents
- Stomach Acid – Carolina Biological Supply Company: Gastric Juice, Artificial, Laboratory Grade
- Human Sweat – Pickering AATCC TM15 Sweat pH 4.3
- Urine – Carolina Biological Supply Company: Simulated Urine, Normal (already on standard test)
- Viscot Mini Surgical Fine Tip Marker
Case Study: Stain Resistance Test – Cleaning Chemicals

Disinfectant chemicals/products used to clean the stained samples *in lieu of soap and water*:

- Oxivir TB wipes Hydrogen Peroxide (0.5%)
- Clorox Bleach Germicidal Wipes
- Virex II 256
Case Study: Stain Resistance Test - Ratings

Ratings for Fabrics after application, *extended dwell time*, and cleaning of staining/contaminate agents with *hospital disinfectants in lieu of soap & water*:

4 Excellent cleanability: No stain mark in the material or migration through to backing material

3 Good cleanability: Damage determined to not affect the material performance and aesthetically acceptable

2 Poor cleanability: Stain almost intact, softening, stiffening and/or swelling is present and appears permanent

1 Severe effect: Non-cleanable, no stain removed, stain migrated through to backing material, cracking, and/or delamination clearly visible.
Case Study: Stain Resistance Test – Process

APPLICATION OF STAIN, 48 HR DWELL TIME

AFTER CLEANING, EVALUATE
Case Study: Material Testing – New Staining Agents Results

<table>
<thead>
<tr>
<th>Stain</th>
<th>Replicate (Cleaning Agent)</th>
<th>Fabric 1 Vinyl w/Brand A Topcoat</th>
<th>Fabric 2 Vinyl with UV & Acrylic Topcoat</th>
<th>Fabric 3 Thermoplastic Elastomer</th>
<th>Fabric 4 Silicone, no topcoat</th>
<th>Fabric 5 Polyurethane</th>
<th>Fabric 6 Treated Leather</th>
<th>Fabric 7 Vinyl w/Brand B Topcoat</th>
<th>Fabric 8 100% Nylon Matrix</th>
<th>Fabric 9 Polycarbonate w/Brand C Topcoat</th>
<th>Fabric 10 Silicone w/Brand C Topcoat</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 (Virex)</td>
<td>S: +</td>
<td>Rating: 2.0</td>
<td>Rating: 3.0</td>
<td>Rating: 2.0</td>
</tr>
</tbody>
</table>

S= Stain Present
Evaluated using: + (present) or - (not present)

4 Excellent 3 Good 2 Poor 1 Severe Effect
Case Study: Material Testing – New Staining Agents Results

<table>
<thead>
<tr>
<th>Stain</th>
<th>Replicate Agent</th>
<th>Fabric 1 Vinyl w/Brand A Topcoat</th>
<th>Fabric 2 Vinyl with UV & Acrylic Topcoat</th>
<th>Fabric 3 Thermoplastic Elastomer</th>
<th>Fabric 4 Silicone, no topcoat</th>
<th>Fabric 5 Polyurethane</th>
<th>Fabric 6 Treated Leather</th>
<th>Fabric 7 Vinyl w/Brand B Topcoat</th>
<th>Fabric 8 100% Nylon Matrix</th>
<th>Fabric 9 Polycarbonate w/Brand C Topcoat</th>
<th>Fabric 10 Silicone w/Brand C Topcoat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Oxiwir)</td>
<td>S: +</td>
<td>S: +</td>
<td>S: -</td>
<td>S: +</td>
<td>S: +</td>
<td>S: +</td>
<td>S: +</td>
<td>Rating: 3.3</td>
<td>Rating: 3.7</td>
<td>Rating: 4.0</td>
<td>Rating: 3.3</td>
</tr>
<tr>
<td>2 (Bleach)</td>
<td>S: +</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 2.7</td>
<td>Rating: 3.0</td>
</tr>
<tr>
<td>3 (Virex)</td>
<td>S: +</td>
<td>Rating: 3.3</td>
<td>Rating: 3.0</td>
<td>Rating: 2.3</td>
<td>Rating: 3.0</td>
</tr>
<tr>
<td>4 (Oxiwir)</td>
<td>S: +</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 2.3</td>
<td>Rating: 3.0</td>
</tr>
<tr>
<td>5 (Bleach)</td>
<td>S: +</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 2.7</td>
<td>Rating: 3.0</td>
</tr>
<tr>
<td>6 (Virex)</td>
<td>S: +</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 2.3</td>
<td>Rating: 3.0</td>
</tr>
</tbody>
</table>

S= Stain Present
Rating: 1 = Severe Effect, 2 = Poor, 3 = Good, 4 = Excellent

Copyright © 2018. Ohio State Innovation Foundation. All rights reserved. No part of this document may be reproduced, displayed, modified, or distributed in any form without a written agreement with The Ohio State University Technology Commercialization Office.”

4 Excellent 3 Good 2 Poor 1 Severe Effect
Case Study: Material Testing – New Staining Agents Results

<table>
<thead>
<tr>
<th>Stain (Cleaning Agent)</th>
<th>Replicate 1 (Vinyl w/Brand A Topcoat)</th>
<th>Replicate 2 (Vinyl with UV & Acrylic Topcoat)</th>
<th>Replicate 3 (Thermoplastic Elastomer)</th>
<th>Replicate 4 (Silicone, no topcoat)</th>
<th>Replicate 5 (Polyurethane)</th>
<th>Replicate 6 (Treated Leather)</th>
<th>Replicate 7 (Vinyl w/Brand B Topcoat)</th>
<th>Replicate 8 (100% Nylon Matrix)</th>
<th>Replicate 9 (Poly carbonate w/Brand C Topcoat)</th>
<th>Replicate 10 (Silicone w/Brand C Topcoat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rating: 3.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 3.3</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
</tr>
<tr>
<td>Rating: 2.0</td>
<td>Rating: 3.7</td>
<td>Rating: 3.0</td>
<td>Rating: 2.7</td>
<td>Rating: 3.0</td>
<td>Rating: 2.7</td>
<td>Rating: 2.7</td>
<td>Rating: 2.0</td>
<td>Rating: 3.7</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
</tr>
<tr>
<td>J Jergen's Daily Moisture Dry Skin Moisturizer</td>
<td>Rating: 2.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 3.7</td>
<td>Rating: 3.3</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 2.3</td>
<td>Rating: 4.0</td>
</tr>
<tr>
<td>Rating: 3.3</td>
<td>Rating: 3.7</td>
<td>Rating: 3.3</td>
<td>Rating: 2.7</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 2.7</td>
<td>Rating: 3.3</td>
<td>Rating: 3.0</td>
</tr>
<tr>
<td>Rating: 2.0</td>
<td>Rating: 3.3</td>
<td>Rating: 4.0</td>
<td>Rating: 2.7</td>
<td>Rating: 2.7</td>
<td>Rating: 3.0</td>
<td>Rating: 2.0</td>
<td>Rating: 2.0</td>
<td>Rating: 2.0</td>
<td>Rating: 3.0</td>
<td>Rating: 2.7</td>
</tr>
<tr>
<td>Rating: 2.7</td>
<td>Rating: 3.7</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.0</td>
<td>Rating: 2.7</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 2.7</td>
</tr>
</tbody>
</table>

$ = Stain Present
Evaluations using: + (present) or - (not present)

4 Excellent 3 Good 2 Poor 1 Severe Effect
Case Study: Material Testing – New Staining Agents Results

<table>
<thead>
<tr>
<th>Stain</th>
<th>Replicate (Cleaning Agent)</th>
<th>Fabric 1 Vinyl w/Brand A Topcoat</th>
<th>Fabric 2 Vinyl with UV & Acrylic Topcoat</th>
<th>Fabric 3 Thermoplastic Elastomer</th>
<th>Fabric 4 Silicone, no topcoat</th>
<th>Fabric 5 Polyurethane</th>
<th>Fabric 6 Treated Leather</th>
<th>Fabric 7 Vinyl w/Brand B Topcoat</th>
<th>Fabric 8 100% Nylon Matrix</th>
<th>Fabric 9 Polycarbonate w/Brand C Topcoat</th>
<th>Fabric 10 Silicone w/Brand C Topcoat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oxivir</td>
<td>S: -</td>
<td>S: -</td>
<td>S: -</td>
<td>S: +</td>
<td>S: +</td>
<td>S: -</td>
<td>S: +</td>
<td>S: -</td>
<td>S: +</td>
<td>S: -</td>
</tr>
<tr>
<td></td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 3.7</td>
</tr>
<tr>
<td>2</td>
<td>Bleach</td>
<td>S: -</td>
<td>S: -</td>
<td>S: -</td>
<td>S: +</td>
<td>S: +</td>
<td>S: -</td>
<td>S: +</td>
<td>S: -</td>
<td>S: -</td>
<td>S: -</td>
</tr>
<tr>
<td></td>
<td>Rating: 4.0</td>
<td>Rating: 3.7</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.3</td>
<td>Rating: 3.3</td>
<td>Rating: 3.3</td>
<td>Rating: 3.3</td>
<td>Rating: 3.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.3</td>
</tr>
<tr>
<td>3</td>
<td>Virex</td>
<td>S: -</td>
<td>S: -</td>
<td>S: -</td>
<td>S: +</td>
<td>S: +</td>
<td>S: -</td>
<td>S: +</td>
<td>S: -</td>
<td>S: -</td>
<td>S: -</td>
</tr>
<tr>
<td></td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 2.7</td>
<td>Rating: 3.3</td>
<td>Rating: 4.0</td>
<td>Rating: 3.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.7</td>
</tr>
<tr>
<td>4</td>
<td>Oxivir</td>
<td>S: -</td>
<td>S: +</td>
<td>S: -</td>
<td>S: +</td>
<td>S: +</td>
<td>S: -</td>
<td>S: +</td>
<td>S: -</td>
<td>S: -</td>
<td>S: -</td>
</tr>
<tr>
<td></td>
<td>Rating: 4.0</td>
<td>Rating: 3.7</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.3</td>
<td>Rating: 3.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
</tr>
<tr>
<td>5</td>
<td>Bleach</td>
<td>S: -</td>
<td>S: -</td>
<td>S: -</td>
<td>S: +</td>
<td>S: +</td>
<td>S: -</td>
<td>S: +</td>
<td>S: -</td>
<td>S: -</td>
<td>S: -</td>
</tr>
<tr>
<td></td>
<td>Rating: 4.0</td>
<td>Rating: 3.7</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.0</td>
</tr>
<tr>
<td>6</td>
<td>Virex</td>
<td>S: +</td>
<td>S: -</td>
<td>S: -</td>
<td>S: +</td>
<td>S: +</td>
<td>S: -</td>
<td>S: +</td>
<td>S: -</td>
<td>S: -</td>
<td>S: -</td>
</tr>
<tr>
<td></td>
<td>Rating: 3.7</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 3.3</td>
<td>Rating: 4.0</td>
</tr>
</tbody>
</table>

S = Stain Present
Evaluated using: + (present) or - (not present)

4 Excellent 3 Good 2 Poor 1 Severe Effect
Case Study: Material Testing – New Staining Agents Results

<table>
<thead>
<tr>
<th>Stain</th>
<th>Replicate (Cleaning Agent)</th>
<th>Fabric 1 Vinyl w/Brand A Topcoat</th>
<th>Fabric 2 Vinyl with UV & Acrylic Topcoat</th>
<th>Fabric 3 Thermoplastic Elastomer</th>
<th>Fabric 4 Silicone, no topcoat</th>
<th>Fabric 5 Polyurethane</th>
<th>Fabric 6 Treated Leather</th>
<th>Fabric 7 Vinyl w/Brand B Topcoat</th>
<th>Fabric 8 100% Nylon Matrix</th>
<th>Fabric 9 Polycarbonate w/Brand C Topcoat</th>
<th>Fabric 10 Silicone w/Brand C Topcoat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Oxivir)</td>
<td></td>
<td>S: -</td>
<td>S: +</td>
<td>S: -</td>
<td>S: -</td>
<td>S: -</td>
<td>S: +</td>
<td>S: +</td>
<td>S: -</td>
<td>S: +</td>
<td>S: -</td>
</tr>
<tr>
<td>Rating: 3.7</td>
<td></td>
<td>Rating: 3.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.3</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
</tr>
<tr>
<td>2 (Bleach)</td>
<td></td>
<td>S: -</td>
<td>S: +</td>
<td>S: -</td>
<td>S: +</td>
<td>S: +</td>
<td>S: +</td>
<td>S: +</td>
<td>S: -</td>
<td>S: +</td>
<td>S: -</td>
</tr>
<tr>
<td>Rating: 4.0</td>
<td></td>
<td>Rating: 3.0</td>
<td>Rating: 3.3</td>
<td>Rating: 3.7</td>
<td>Rating: 4.0</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 2.7</td>
<td>Rating: 3.7</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
</tr>
<tr>
<td>3 (Virex)</td>
<td></td>
<td>S: -</td>
<td>S: +</td>
<td>S: -</td>
<td>S: +</td>
<td>S: +</td>
<td>S: +</td>
<td>S: -</td>
<td>S: +</td>
<td>S: -</td>
<td>S: -</td>
</tr>
<tr>
<td>Rating: 4.0</td>
<td></td>
<td>Rating: 3.0</td>
<td>Rating: 3.3</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.0</td>
<td>Rating: 4.0</td>
<td>Rating: 2.7</td>
<td>Rating: 3.7</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
</tr>
<tr>
<td>4 (Oxivir)</td>
<td></td>
<td>S: -</td>
<td>S: +</td>
<td>S: -</td>
<td>S: +</td>
<td>S: +</td>
<td>S: +</td>
<td>S: -</td>
<td>S: +</td>
<td>S: -</td>
<td>S: -</td>
</tr>
<tr>
<td>Rating: 4.0</td>
<td></td>
<td>Rating: 3.0</td>
<td>Rating: 3.3</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.0</td>
<td>Rating: 4.0</td>
<td>Rating: 2.7</td>
<td>Rating: 3.7</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
</tr>
<tr>
<td>5 (Bleach)</td>
<td></td>
<td>S: -</td>
<td>S: +</td>
<td>S: -</td>
<td>S: +</td>
<td>S: +</td>
<td>S: +</td>
<td>S: -</td>
<td>S: +</td>
<td>S: -</td>
<td>S: +</td>
</tr>
<tr>
<td>Rating: 4.0</td>
<td></td>
<td>Rating: 3.3</td>
<td>Rating: 3.7</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.7</td>
<td>Rating: 4.0</td>
<td>Rating: 2.7</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
</tr>
<tr>
<td>6 (Virex)</td>
<td></td>
<td>S: -</td>
<td>S: +</td>
<td>S: -</td>
<td>S: +</td>
<td>S: +</td>
<td>S: +</td>
<td>S: -</td>
<td>S: +</td>
<td>S: -</td>
<td>S: -</td>
</tr>
<tr>
<td>Rating: 4.0</td>
<td></td>
<td>Rating: 3.3</td>
<td>Rating: 3.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.7</td>
<td>Rating: 4.0</td>
<td>Rating: 2.3</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
</tr>
</tbody>
</table>

S: Stain Present
Evaluated using: + (present) or - (not present)

<table>
<thead>
<tr>
<th>Score</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Excellent</td>
</tr>
<tr>
<td>3</td>
<td>Good</td>
</tr>
<tr>
<td>2</td>
<td>Poor</td>
</tr>
<tr>
<td>1</td>
<td>Severe Effect</td>
</tr>
</tbody>
</table>

Copyright © 2018. Ohio State Innovation Foundation. All rights reserved. No part of this document may be reproduced, displayed, modified, or distributed in any form without a written agreement with The Ohio State University Technology Commercialization Office.”

#HCDcon
Case Study: Material Testing – New Staining Agents Results

<table>
<thead>
<tr>
<th>Stain</th>
<th>Replicate (Cleaning Agent)</th>
<th>Fabric 1 Vinyl w/Brand A Topcoat</th>
<th>Fabric 2 Vinyl with UV & Acrylic Topcoat</th>
<th>Fabric 3 Thermoplastic Elastomer</th>
<th>Fabric 4 Silicone, no topcoat</th>
<th>Fabric 5 Polyurethane</th>
<th>Fabric 6 Treated Leather</th>
<th>Fabric 7 Vinyl w/Brand B Topcoat</th>
<th>Fabric 8 100% Nylon Matrix</th>
<th>Fabric 9 Polycarbonate w/Brand C Topcoat</th>
<th>Fabric 10 Silicone w/Brand C Topcoat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Oxivir)</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Rating: 2.7</td>
<td></td>
<td>Rating: 2.3</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 2.3</td>
<td>Rating: 3.0</td>
<td>Rating: 2.7</td>
<td>Rating: 2.0</td>
<td>Rating: 1.7</td>
<td>Rating: 3.0</td>
<td></td>
</tr>
<tr>
<td>2 (Bleach)</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Rating: 2.0</td>
<td></td>
<td>Rating: 2.7</td>
<td>Rating: 2.0</td>
<td>Rating: 2.0</td>
<td>Rating: 1.0</td>
<td>Rating: 2.7</td>
<td>Rating: 2.0</td>
<td>Rating: 2.0</td>
<td>Rating: 1.3</td>
<td>Rating: 1.0</td>
<td></td>
</tr>
<tr>
<td>3 (Virex)</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Rating: 2.3</td>
<td></td>
<td>Rating: 2.0</td>
<td>Rating: 1.7</td>
<td>Rating: 2.0</td>
<td>Rating: 2.7</td>
<td>Rating: 2.3</td>
<td>Rating: 1.3</td>
<td>Rating: 2.3</td>
<td>Rating: 1.3</td>
<td>Rating: 1.0</td>
<td></td>
</tr>
<tr>
<td>4 (Oxivir)</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Rating: 2.0</td>
<td></td>
<td>Rating: 2.7</td>
<td>Rating: 2.7</td>
<td>Rating: 2.7</td>
<td>Rating: 2.3</td>
<td>Rating: 2.3</td>
<td>Rating: 2.0</td>
<td>Rating: 2.0</td>
<td>Rating: 2.0</td>
<td>Rating: 2.3</td>
<td></td>
</tr>
<tr>
<td>5 (Bleach)</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Rating: 3.0</td>
<td></td>
<td>Rating: 2.0</td>
<td>Rating: 1.0</td>
<td>Rating: 1.3</td>
<td>Rating: 2.3</td>
<td>Rating: 2.3</td>
<td>Rating: 1.0</td>
<td>Rating: 2.3</td>
<td>Rating: 1.0</td>
<td>Rating: 1.0</td>
<td></td>
</tr>
<tr>
<td>6 (Virex)</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Rating: 2.3</td>
<td></td>
<td>Rating: 2.0</td>
<td>Rating: 1.7</td>
<td>Rating: 1.3</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 1.7</td>
<td>Rating: 1.0</td>
<td>Rating: 1.0</td>
<td>Rating: 1.0</td>
<td></td>
</tr>
</tbody>
</table>

S = Stain Present
Evaluated using: + (present) or - (not present)

4 Excellent 3 Good 2 Poor 1 Severe Effect
Case Study: Material Testing – New Staining Agents Results

<table>
<thead>
<tr>
<th>Stain</th>
<th>Replicate Cleaning Agent</th>
<th>Fabric 1 Vinyl w/Brand A Topcoat</th>
<th>Fabric 2 Vinyl with UV & Acrylic Topcoat</th>
<th>Fabric 3 Thermoplastic Elastomer</th>
<th>Fabric 4 Silicone, no topcoat</th>
<th>Fabric 5 Polyurethane</th>
<th>Fabric 6 Treated Leather</th>
<th>Fabric 7 Vinyl w/Brand B Topcoat</th>
<th>Fabric 8 100% Nylon Matrix</th>
<th>Fabric 9 Poly carbonate w/Brand C Topcoat</th>
<th>Fabric 10 Silicone w/Brand C Topcoat</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (Bleach)</td>
<td>S: + Rating: 3.7</td>
<td>S: +</td>
<td>S: -</td>
<td>S: +</td>
<td>S: +</td>
<td>S: +</td>
<td>S: +</td>
<td>S: +</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
</tr>
<tr>
<td>5 (Bleach)</td>
<td>S: + Rating: 2.7</td>
<td>S: +</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 2.0</td>
</tr>
</tbody>
</table>

S = Stain Present
Evaluating using: + (present) or - (not present)

Rating Scale

- **4** Excellent
- **3** Good
- **2** Poor
- **1** Severe Effect

Copyright © 2018. Ohio State Innovation Foundation. All rights reserved. No part of this document may be reproduced, displayed, modified, or distributed in any form without a written agreement with The Ohio State University Technology Commercialization Office. #HCDcon
Case Study: Material Testing – New Staining Agents Results

<table>
<thead>
<tr>
<th>Stain</th>
<th>Replicate Cleaning Agent</th>
<th>Fabric 1 Vinyl w/Brand A Topcoat</th>
<th>Fabric 2 Vinyl with UV & Acrylic Topcoat</th>
<th>Fabric 3 Thermoplastic Elastomer</th>
<th>Fabric 4 Silicone, no topcoat</th>
<th>Fabric 5 Polyurethane</th>
<th>Fabric 6 Treated Leather</th>
<th>Fabric 7 Vinyl w/Brand B Topcoat</th>
<th>Fabric 8 100% Nylon Matrix</th>
<th>Fabric 9 Polycarbonate w/Brand C Topcoat</th>
<th>Fabric 10 Silicone w/Brand C Topcoat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Oxivir)</td>
<td>S: +</td>
</tr>
<tr>
<td>2 (Bleach)</td>
<td>S: +</td>
</tr>
<tr>
<td>3 (Virex)</td>
<td>S: +</td>
<td>S: -</td>
<td>S: -</td>
<td>S: +</td>
</tr>
<tr>
<td>4 (Oxivir)</td>
<td>S: +</td>
<td>S: -</td>
<td>S: -</td>
<td>S: +</td>
</tr>
<tr>
<td>5 (Bleach)</td>
<td>S: +</td>
</tr>
<tr>
<td>6 (Virex)</td>
<td>S: +</td>
<td>S: -</td>
<td>S: -</td>
<td>S: +</td>
</tr>
</tbody>
</table>

S: Stain Present
Evaluated using: + (present) or - (not present)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Excellent</th>
<th>Good</th>
<th>Poor</th>
<th>Severe Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Stain</td>
<td>Replicate (Cleaning Agent)</td>
<td>Fabric 1 Vinyl w/Brand & A Topcoat</td>
<td>Fabric 2 Vinyl w/UV & Acrylic Topcoat</td>
<td>Fabric 3 Thermoplastic Elastomer</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------</td>
<td>----------------------------------</td>
<td>-------------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>1 (Oxivir)</td>
<td></td>
<td>S: -</td>
<td>S: -</td>
<td>S: +</td>
</tr>
<tr>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.0</td>
</tr>
<tr>
<td>2 (Bleach)</td>
<td></td>
<td>S: -</td>
<td>S: -</td>
<td>S: +</td>
</tr>
<tr>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.0</td>
</tr>
<tr>
<td>3 (Virex)</td>
<td>Stomach Acid - Carolina Biological Supply</td>
<td>S: -</td>
<td>S: -</td>
<td>S: +</td>
</tr>
<tr>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.0</td>
</tr>
<tr>
<td>4 (Oxivir)</td>
<td></td>
<td>S: -</td>
<td>S: -</td>
<td>S: +</td>
</tr>
<tr>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.0</td>
</tr>
<tr>
<td>5 (Bleach)</td>
<td></td>
<td>S: -</td>
<td>S: -</td>
<td>S: +</td>
</tr>
<tr>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.0</td>
</tr>
<tr>
<td>6 (Virex)</td>
<td></td>
<td>S: -</td>
<td>S: -</td>
<td>S: +</td>
</tr>
<tr>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.0</td>
</tr>
</tbody>
</table>

S: Stain Present
Evaluated using: + (present) or - (not present)

4 Excellent 3 Good 2 Poor 1 Severe Effect

Copyright © 2018. Ohio State Innovation Foundation. All rights reserved. No part of this document may be reproduced, displayed, modified, or distributed in any form without a written agreement with The Ohio State University Technology Commercialization Office.”

#HCDcon
Case Study: Material Testing – New Staining Agents Results

<table>
<thead>
<tr>
<th>Stain</th>
<th>Replicate (Cleaning Agent)</th>
<th>Fabric 1 Vinyl w/Brand A Topcoat</th>
<th>Fabric 2 Vinyl with UV & Acrylic Topcoat</th>
<th>Fabric 3 Thermoplastic Elastomer</th>
<th>Fabric 4 Silicone, no topcoat</th>
<th>Fabric 5 Polyurethane</th>
<th>Fabric 6 Treated Leather</th>
<th>Fabric 7 Vinyl w/Brand B Topcoat</th>
<th>Fabric 8 100% Nylon Matrix</th>
<th>Fabric 9 Polycarbonate w/Brand C Topcoat</th>
<th>Fabric 10 Silicone w/Brand C Topcoat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Oxivir)</td>
<td>S: -</td>
</tr>
<tr>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.0</td>
<td>Rating: 4.0</td>
</tr>
<tr>
<td>2 (Bleach)</td>
<td>S: -</td>
</tr>
<tr>
<td>Rating: 3.7</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.7</td>
<td>Rating: 3.7</td>
<td>Rating: 3.7</td>
<td>Rating: 3.7</td>
<td>Rating: 3.7</td>
</tr>
<tr>
<td>3 (Virex)</td>
<td>S: -</td>
</tr>
<tr>
<td>Rating: 4.0</td>
<td>Rating: 3.7</td>
<td>Rating: 3.7</td>
<td>Rating: 3.7</td>
<td>Rating: 3.7</td>
</tr>
<tr>
<td>4 (Oxivir)</td>
<td>S: -</td>
</tr>
<tr>
<td>Rating: 4.0</td>
</tr>
<tr>
<td>5 (Bleach)</td>
<td>S: -</td>
</tr>
<tr>
<td>Rating: 4.0</td>
<td>Rating: 3.7</td>
<td>Rating: 3.7</td>
<td>Rating: 3.3</td>
<td>Rating: 2.7</td>
<td>Rating: 3.3</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 3.3</td>
<td>Rating: 3.3</td>
<td>Rating: 3.3</td>
</tr>
<tr>
<td>6 (Virex)</td>
<td>S: -</td>
</tr>
<tr>
<td>Rating: 4.0</td>
</tr>
</tbody>
</table>

S= Stain Present
Evaluating using: + (present) or - (not present)

4 Excellent 3 Good 2 Poor 1 Severe Effect

Copyright © 2018. Ohio State Innovation Foundation. All rights reserved. No part of this document may be reproduced, displayed, modified, or distributed in any form without a written agreement with The Ohio State University Technology Commercialization Office.”

#HCDcon
Case Study: Material Testing – New Staining Agents Results

<table>
<thead>
<tr>
<th>Stain</th>
<th>Replicate (Cleaning Agent)</th>
<th>Fabric 1 Vinyl w/Brand A Topcoat</th>
<th>Fabric 2 Vinyl w/UV & Acrylic Topcoat</th>
<th>Fabric 3 Thermoplastic Elastomer</th>
<th>Fabric 4 Silicone, no topcoat</th>
<th>Fabric 5 Polyurethane</th>
<th>Fabric 6 Treated Leather</th>
<th>Fabric 7 Vinyl w/Brand B Topcoat</th>
<th>Fabric 8 100% Nylon Matrix</th>
<th>Fabric 9 Polycarbonate w/Brand C Topcoat</th>
<th>Fabric 10 Silicone w/Brand C Topcoat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Oxvir)</td>
<td></td>
<td>S: -</td>
</tr>
<tr>
<td>Rating: 4.0</td>
<td>Rating: 3.7</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
</tr>
<tr>
<td>2 (Bleach)</td>
<td></td>
<td>S: -</td>
</tr>
<tr>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.0</td>
<td>Rating: 3.7</td>
<td>Rating: 4.0</td>
<td>Rating: 3.0</td>
<td>Rating: 3.7</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.0</td>
</tr>
<tr>
<td>3 (Virex)</td>
<td></td>
<td>S: -</td>
</tr>
<tr>
<td>Rating: 4.0</td>
<td>Rating: 3.7</td>
</tr>
<tr>
<td>4 (Oxvir)</td>
<td></td>
<td>S: -</td>
</tr>
<tr>
<td>Rating: 4.0</td>
<td>Rating: 3.7</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
</tr>
<tr>
<td>5 (Bleach)</td>
<td></td>
<td>S: -</td>
</tr>
<tr>
<td>Rating: 3.0</td>
<td>Rating: 3.3</td>
<td>Rating: 4.0</td>
<td>Rating: 4.0</td>
<td>Rating: 3.3</td>
<td>Rating: 3.7</td>
<td>Rating: 4.0</td>
<td>Rating: 3.0</td>
<td>Rating: 3.7</td>
<td>Rating: 3.7</td>
<td>Rating: 4.0</td>
<td>Rating: 3.3</td>
</tr>
<tr>
<td>6 (Virex)</td>
<td></td>
<td>S: -</td>
</tr>
<tr>
<td>Rating: 4.0</td>
</tr>
</tbody>
</table>

S = Stain Present
Evaluated using: + (present) or - (not present)

4 Excellent 3 Good 2 Poor 1 Severe Effect

Copyright © 2018. Ohio State Innovation Foundation. All rights reserved. No part of this document may be reproduced, displayed, modified, or distributed in any form without a written agreement with The Ohio State University Technology Commercialization Office.”
Case Study: Material Testing – New Staining Agents Results

<table>
<thead>
<tr>
<th>Stain</th>
<th>Replicate (Cleaning Agent)</th>
<th>Fabric 1 Vinyl w/ Brand A Topcoat</th>
<th>Fabric 2 Vinyl with UV & Acrylic Topcoat</th>
<th>Fabric 3 Thermoplastic Elastomer</th>
<th>Fabric 4 Silicone, no topcoat</th>
<th>Fabric 5 Polyurethane</th>
<th>Fabric 6 Treated Leather</th>
<th>Fabric 7 Vinyl w/ Brand B Topcoat</th>
<th>Fabric 8 100% Nylon Matrix</th>
<th>Fabric 9 Polycarbonate w/ Brand C Topcoat</th>
<th>Fabric 10 Silicone w/Brand C Topcoat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Oxivir)</td>
<td>S: +</td>
<td>S: +</td>
<td>S: +</td>
<td>S: -</td>
<td>S: +</td>
</tr>
<tr>
<td>Rating: 1.0</td>
<td>Rating: 1.0</td>
<td>Rating: 1.0</td>
<td>Rating: 1.0</td>
<td>Rating: 4.0</td>
<td>Rating: 1.0</td>
<td>Rating: 1.0</td>
<td>Rating: 1.0</td>
<td>Rating: 1.0</td>
<td>Rating: 1.0</td>
<td>Rating: 2.0</td>
<td>Rating: 3.0</td>
</tr>
<tr>
<td>2 (Bleach)</td>
<td>S: +</td>
</tr>
<tr>
<td>Rating: 2.7</td>
<td>Rating: 3.0</td>
<td>Rating: 2.7</td>
<td>Rating: 2.7</td>
<td>Rating: 3.0</td>
<td>Rating: 2.7</td>
<td>Rating: 2.3</td>
<td>Rating: 3.0</td>
<td>Rating: 2.0</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 2.0</td>
</tr>
<tr>
<td>3 (Virex)</td>
<td>S: +</td>
</tr>
<tr>
<td>Rating: 1.3</td>
<td>Rating: 1.3</td>
<td>Rating: 1.0</td>
<td>Rating: 3.0</td>
<td>Rating: 1.0</td>
<td>Rating: 1.0</td>
<td>Rating: 1.7</td>
<td>Rating: 1.0</td>
<td>Rating: 3.0</td>
<td>Rating: 2.7</td>
<td>Rating: 2.7</td>
<td>Rating: 2.7</td>
</tr>
<tr>
<td>4 (Oxivir)</td>
<td>S: +</td>
</tr>
<tr>
<td>Rating: 1.0</td>
<td>Rating: 1.0</td>
<td>Rating: 1.0</td>
<td>Rating: 3.7</td>
<td>Rating: 1.0</td>
<td>Rating: 1.0</td>
<td>Rating: 1.0</td>
<td>Rating: 1.3</td>
<td>Rating: 3.0</td>
<td>Rating: 2.7</td>
<td>Rating: 3.0</td>
<td>Rating: 2.7</td>
</tr>
<tr>
<td>5 (Bleach)</td>
<td>S: +</td>
</tr>
<tr>
<td>Rating: 2.7</td>
<td>Rating: 2.7</td>
<td>Rating: 2.0</td>
<td>Rating: 3.0</td>
<td>Rating: 2.0</td>
<td>Rating: 2.3</td>
<td>Rating: 3.0</td>
<td>Rating: 3.0</td>
<td>Rating: 2.7</td>
<td>Rating: 2.7</td>
<td>Rating: 2.7</td>
<td>Rating: 2.7</td>
</tr>
<tr>
<td>6 (Virex)</td>
<td>S: +</td>
</tr>
<tr>
<td>Rating: 1.3</td>
<td>Rating: 1.3</td>
<td>Rating: 1.0</td>
<td>Rating: 3.0</td>
<td>Rating: 1.3</td>
<td>Rating: 1.0</td>
<td>Rating: 2.0</td>
<td>Rating: 1.0</td>
<td>Rating: 2.7</td>
<td>Rating: 2.7</td>
<td>Rating: 2.7</td>
<td>Rating: 2.3</td>
</tr>
</tbody>
</table>

S = Stain Present
Evaluated using: + (present) or - (not present)

<table>
<thead>
<tr>
<th>Effect</th>
<th>4: Excellent</th>
<th>3: Good</th>
<th>2: Poor</th>
<th>1: Severe Effect</th>
</tr>
</thead>
</table>

Copyright © 2018. Ohio State Innovation Foundation. All rights reserved. No part of this document may be reproduced, displayed, modified, or distributed in any form without a written agreement with The Ohio State University Technology Commercialization Office.”

#HCDcon
Case Study: Material Testing – New Staining Agents Test Takeaways

<table>
<thead>
<tr>
<th>Patient Transferrable Stains</th>
<th>Scores:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Super Lustrous Lipstick- Love That Red</td>
<td>100% fabrics stains present – no 4s</td>
</tr>
<tr>
<td>Baby Oil</td>
<td>75% of fabrics stains present, all at 2 or 3, few 4s</td>
</tr>
<tr>
<td>Daily Moisture Dry Skin Moisturizer</td>
<td>60% of fabrics stains present; all at 2 or 3, few 4s</td>
</tr>
<tr>
<td>Acetone Nail Polish Remover</td>
<td>30% fabrics types stains present; 3 or 4</td>
</tr>
<tr>
<td>Non-Acetone Polish Remover</td>
<td>30% fabric types stains present; 2, 3, 4</td>
</tr>
<tr>
<td>Broad-Spectrum Sunscreen SPF 50 (Oxybenzone 5%, Avobenzone 3%, Octocrylene 4%, Homosalate 10%, Octisalate 5%)</td>
<td>100% fabrics stains present – no 4s; all fabric types scored 1-2, very few 3s</td>
</tr>
<tr>
<td>Skin Sunscreen Lotion with Broad Spectrum SPF 60+ (Zinc oxide 4.7%, Titanium dioxide 4.9%)</td>
<td>100% fabrics stains present – no 4s; 1 fabric type scored 1, most scored 2</td>
</tr>
<tr>
<td>Jamaican black castor oil strengthen restore leave-in conditioner</td>
<td>100% fabrics stains present – no 4s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Synthetic Body Fluids and Clinical Reagents</th>
<th>Scores:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stomach Acid</td>
<td>40% fabrics stains present, all at 3 & 4</td>
</tr>
<tr>
<td>Human Sweat</td>
<td>0% fabric stains present, though 50% scored 3 on degradation & appearance</td>
</tr>
<tr>
<td>Urine</td>
<td>0% fabric stains present, though 50% scored 3 on degradation & appearance</td>
</tr>
<tr>
<td>Viscot Mini Surgical Fine Tip Marker</td>
<td>100% fabrics stains present; no 4s, many 1,2s</td>
</tr>
</tbody>
</table>
Case Study: Moving Forward

- There is no “silver bullet” fabric for healthcare – yet!
- **Modify Industry standardized tests** to update expectations of performance – adjust to changes in disinfectants and CDC requirements
- **Establish level of risk** before selection of material
- Consider **component-based furniture** over unitized to easily replace items that are forecasted to degrade over time
- Adjust **life-cycle replacement** expectations with Owners
- Manufacturers have **opportunity for innovative & collaborative product development** to create durable fabrics and finishes
Next Steps:

- Everyone: We need your help to get more data! *Fill out the survey!*
- Healthcare Designers: Use the Healthcare Fabric Risk Assessment tool – *Do a field study!*
- Industry Organizations: Help designers, *Share technical information*
- Manufacturers of cleaning products: consider the *real-world challenges* we face and create products that can *safely clean* durable-coated fabrics!
- Fabric manufacturers & distributors: Help designers get the *information* they need to complete their Healthcare Fabric Risk Assessments – Educate your teams – Coordinate with manufacturers of cleaning products

GOALS

- Sample Ticket/Memo Tag in the same format by 2022??

 Work collaboratively to create an industry standard format

- Consider using the term: “Heavy Duty – 24/7” - an evidence term, understood by all
AAHID will post info on their website and LinkedIn page as it becomes available.

Encourage all Interior designers to discuss this with your peers, clients, etc.

We don’t have all the answers yet, but we do have partners to help find the solutions!
Help us to Collect Data!

Cleaning and Disinfection Survey
https://www.surveymonkey.com/r/J6W3PDX

Healthcare Durable Coated Fabrics Upholstery Failures Survey
https://www.surveymonkey.com/r/HKBMM67B
Contact Information

Barbara Dellinger: BDelling@adventisthealthcare.com

Linda Gabel: Linda.Gabel@osumc.edu

Shari Solomon: Solomon@cleanhealthenv.com

Teri Lura Bennett: tbennet2@jhmi.edu
thank you!

...questions?

Do the best you can until you know better. Then when you know, do better.
- Maya Angelou

#HCDcon
Unmask your potential!